basis_factory< InterfaceType, BasisTag > | Runtime dispatcher class: Translates the runtime space_id to a compiletime basis tag |
basis_factory< InterfaceType, lagrange_tag< 1 > > | Returns the Lagrange basis of order 1 ('linear FEM') |
basis_factory< InterfaceType, lagrange_tag< 2 > > | Returns the Lagrange basis of order 2 ('quadratic FEM') |
basis_factory< InterfaceType, lagrange_tag< 3 > > | Returns the Lagrange basis of order three ('cubic FEM') |
boundary_key | A tag class used for storing and accessing boundary data via ViennaData from ViennaGrid objects |
cell_quan< CellType, InterfaceType > | The main cell quantity class for using piecewise constant or piecewise expressions (in local coordinates) with ViennaMath |
cell_quan_constant< CellType, KeyType, DataType > | Implementation of a function which is piecewise constant on each cell. Function values are retrieved from ViennaData |
cell_quan_expr< CellType, KeyType, DataType > | Implementation of a function which is specified as an expression given in local coordinates on each cell. Expressions are retrieved from ViennaData |
cell_quan_interface< CellType, NumericT > | The runtime interface for cell quantities |
cell_quan_wrapper< CellType, NumericT > | A type erasure class which enables to store cell_quan_constants and cell_quan_exprs with different template arguments in a single array |
cell_updater< CellType, InterfaceType > | A helper functor for updating the cell_quan tokens in a ViennaMath expression |
det_dF_dt_key | A tag class used for storing and accessing the Jacobian determinant via ViennaData on ViennaGrid objects |
dt_dx_handler< viennafem::unit_cube > | |
dt_dx_handler< viennafem::unit_interval > | |
dt_dx_handler< viennafem::unit_square > | |
dt_dx_handler< viennafem::unit_tetrahedron > | |
dt_dx_handler< viennafem::unit_triangle > | |
dt_dx_key< local_index, global_index > | A tag class used for storing and accessing the partial derivatives of the element mappings |
equation_wrapper< MatrixT, VectorT > | A simple wrapper class which abstracts a matrix and a vector into a linear equation |
extract_domain< EntityType > | If EntityType is a ViennaGrid segment, returns the domain. If EntityType is already the domain, no changes |
extract_domain< viennagrid::segment_t< ConfigType > > | Specialization of the domain extraction for a ViennaGrid segment |
jacobian_adder< CellType, InterfaceType, ReferenceCellTag > | Multiplies a given expression with the Jacobian cell-quantity. If the expression is given by an integral, the integrand is multiplied with the Jacobian |
key_dispatch< viennafem::det_dF_dt_key > | Customizes ViennaData to access the Jacobian of the element transformation by a key-based dispatch |
key_dispatch< viennafem::dt_dx_key< local_index, global_index > > | Customizes ViennaData to access element transformation coefficients by a key-based dispatch |
lagrange_tag< order > | A tag identifying the family of Lagrange basis functions |
latex_logger< InterfaceType > | The LaTeX logger class |
linear_pde_options | |
linear_pde_system< InterfaceType, MappingKeyType, BoundaryKeyType > | Representation of a linear system of partial differential equations |
local_basis< InterfaceType, BasisTag, ReferenceCell, TopologyDim, ElementID > | Facility for retrieving the local basis of a cell. Used internally only |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 0 > | Returns the first edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 1 > | Returns the second edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 10 > | Returns the eleventh edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 11 > | Returns the twelveth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 2 > | Returns the third edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 3 > | Returns the forth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 4 > | Returns the fifth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 5 > | Returns the sixth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 6 > | Returns the seventh edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 7 > | Returns the eigth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 8 > | Returns the ninth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_cube, 1, 9 > | Returns the tenth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_interval, 1, 0 > | Returns the quadratic basis function defined in the interior of the line |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_square, 1, 0 > | Returns the first edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_square, 1, 1 > | Returns the second edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_square, 1, 2 > | Returns the third edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_square, 1, 3 > | Returns the forth edge basis function (quadratic along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 0 > | Returns the first (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 1 > | Returns the second (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 2 > | Returns the third (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 3 > | Returns the forth (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 4 > | Returns the fifth (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_tetrahedron, 1, 5 > | Returns the sixth (quadratic) edge basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_triangle, 1, 0 > | Returns the first (quadratic) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_triangle, 1, 1 > | Returns the second (quadratic) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 2 >, unit_triangle, 1, 2 > | Returns the third (quadratic) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< 3 >, unit_interval, 1, 0 > | Returns the first cubic basis function defined in the interior of the line |
local_basis< InterfaceType, viennafem::lagrange_tag< 3 >, unit_interval, 1, 1 > | Returns the second cubic basis function defined in the interior of the line |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 0 > | Returns the first vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 1 > | Returns the second vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 2 > | Returns the third vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 3 > | Returns the forth vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 4 > | Returns the fifth vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 5 > | Returns the sixth vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 6 > | Returns the seventh vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_cube, 0, 7 > | Returns the eigth vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_interval, 0, 0 > | Returns the left vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_interval, 0, 1 > | Returns the right vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_square, 0, 0 > | Returns the first vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_square, 0, 1 > | Returns the second vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_square, 0, 2 > | Returns the third vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_square, 0, 3 > | Returns the forth vertex basis function (linear along edges) |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_tetrahedron, 0, 0 > | Returns the first (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_tetrahedron, 0, 1 > | Returns the second (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_tetrahedron, 0, 2 > | Returns the third (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_tetrahedron, 0, 3 > | Returns the forth (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_triangle, 0, 0 > | Returns the first (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_triangle, 0, 1 > | Returns the second (linear) vertex basis function |
local_basis< InterfaceType, viennafem::lagrange_tag< order >, unit_triangle, 0, 2 > | Returns the third (linear) vertex basis function |
logger_interface< InterfaceType > | The common interface for all loggers |
mapping_key | A tag class used for storing and accessing unknown indices (global basisfunction numbers) via ViennaData from ViennaGrid objects |
mapping_key_type< id > | A tag for storing mapping indices on the grid |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::hexahedron_tag > > | Customizes ViennaData such that the id() member of hexahedra is used as identification mechanism |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::line_tag > > | Customizes ViennaData such that the id() member of lines is used as identification mechanism |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::point_tag > > | Customizes ViennaData such that the id() member of vertices is used as identification mechanism |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::quadrilateral_tag > > | Customizes ViennaData such that the id() member of quadrilaterals is used as identification mechanism |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::tetrahedron_tag > > | Customizes ViennaData such that the id() member of tetrahedra is used as identification mechanism |
object_identifier< viennagrid::element_t< ConfigType, viennagrid::triangle_tag > > | Customizes ViennaData such that the id() member of triangles is used as identification mechanism |
pde_assembler | The main ViennaFEM assembler class |
pde_assembler_internal | The worker class which assembles the system of linear equations ('FEM assembly core') |
reference_cell_for_basis< Cell, T > | Metafunction for returning the reference cell for a cell type and a basis function type |
reference_cell_for_basis< viennagrid::hexahedron_tag, lagrange_tag< order > > | Defining the unit cube to be used for the Lagrange basis on lines |
reference_cell_for_basis< viennagrid::line_tag, lagrange_tag< order > > | Defining the unit interval to be used for the Lagrange basis on lines |
reference_cell_for_basis< viennagrid::quadrilateral_tag, lagrange_tag< order > > | Defining the unit interval to be used for the Lagrange basis on lines |
reference_cell_for_basis< viennagrid::tetrahedron_tag, lagrange_tag< order > > | Defining the unit tetrahedron to be used for the Lagrange basis on lines |
reference_cell_for_basis< viennagrid::triangle_tag, lagrange_tag< order > > | Defining the unit interval to be used for the Lagrange basis on lines |
rt_gauss_quad_element< viennafem::unit_cube, 1, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 1 |
rt_gauss_quad_element< viennafem::unit_cube, 3, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 3 |
rt_gauss_quad_element< viennafem::unit_cube, 5, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 5 |
rt_gauss_quad_element< viennafem::unit_interval, 1, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 1 |
rt_gauss_quad_element< viennafem::unit_interval, 3, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 3 |
rt_gauss_quad_element< viennafem::unit_interval, 5, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 5 |
rt_gauss_quad_element< viennafem::unit_square, 1, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 1 |
rt_gauss_quad_element< viennafem::unit_square, 3, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 3 |
rt_gauss_quad_element< viennafem::unit_square, 5, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 5 |
rt_gauss_quad_element< viennafem::unit_tetrahedron, 1, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 1 |
rt_gauss_quad_element< viennafem::unit_triangle, 1, InterfaceType > | Gaussian quadrature rule exact for polynomials up to order 1 |
rt_gauss_quad_element< viennafem::unit_triangle, 7, InterfaceType > | Gauss quadrature rule exact for polynomials up to order seven |
rt_keast_quad_element< viennafem::unit_tetrahedron, 2, InterfaceType > | Keast rule, exact for polynomials up to degree 2 |
rt_keast_quad_element< viennafem::unit_tetrahedron, 3, InterfaceType > | Keast rule, exact for polynomials up to degree 3. Uses a negative weight, thus be careful with numerical stability! |
rt_keast_quad_element< viennafem::unit_tetrahedron, 4, InterfaceType > | Keast rule, exact for polynomials up to degree 4 |
rt_keast_quad_element< viennafem::unit_tetrahedron, 5, InterfaceType > | Keast rule, exact for polynomials up to degree 5 |
rt_keast_quad_element< viennafem::unit_tetrahedron, 6, InterfaceType > | Keast rule, exact for polynomials up to degree 6 |
rt_latex_dt_dx_processor< CellType, InterfaceType > | Defines a custom LaTeX processor for cell_quan expressions |
rt_strang_quad_element< viennafem::unit_triangle, 13, InterfaceType > | Quadrature rule exact for polynomials up to order 13 (TOMS algorithm 706) |
rt_strang_quad_element< viennafem::unit_triangle, 2, InterfaceType > | Quadrature rule exact for polynomials up to order two (cf. Strang, Fix: An Analysis of the Finite Element Method) |
rt_strang_quad_element< viennafem::unit_triangle, 3, InterfaceType > | Quadrature rule exact for polynomials up to order three (cf. Strang, Fix: An Analysis of the Finite Element Method) |
rt_strang_quad_element< viennafem::unit_triangle, 4, InterfaceType > | Quadrature rule exact for polynomials up to order four (cf. Strang, Fix: An Analysis of the Finite Element Method) |
rt_strang_quad_element< viennafem::unit_triangle, 5, InterfaceType > | Quadrature rule exact for polynomials up to order five (cf. Strang, Fix: An Analysis of the Finite Element Method) |
rt_strang_quad_element< viennafem::unit_triangle, 6, InterfaceType > | Quadrature rule exact for polynomials up to order six (cf. Strang, Fix: An Analysis of the Finite Element Method) |
rt_strang_quad_element< viennafem::unit_triangle, 7, InterfaceType > | Quadrature rule exact for polynomials up to order seven (cf. Strang, Fix: An Analysis of the Finite Element Method) |
space_to_id< T > | Provides a unique ID from a basis function tag (compiletime-runtime translation) |
space_to_id< lagrange_tag< order > > | Specialization of the unique ID facility for the Lagrange family |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::hexahedron_tag > > | Configures ViennaData such that data is stored densely on hexahedra, no matter which key type is used |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::line_tag > > | Configures ViennaData such that data is stored densely on lines, no matter which key type is used |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::point_tag > > | Configures ViennaData such that data is stored densely on vertices, no matter which key type is used |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::quadrilateral_tag > > | Configures ViennaData such that data is stored densely on quadrilaterals, no matter which key type is used |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::tetrahedron_tag > > | Configures ViennaData such that data is stored densely on tetrahedra, no matter which key type is used |
storage< KeyType, ValueType, viennagrid::element_t< ConfigType, viennagrid::triangle_tag > > | Configures ViennaData such that data is stored densely on triangles, no matter which key type is used |
symmetric_cube | A tag for the cube with vertices at (-1,-1,-1), (1,-1,-1), (-1,1,-1), (1,1,-1), (-1,-1,1), (1,-1,1), (-1,1,1), (1,1,1) |
symmetric_interval | A tag representing the interval [-1,1]. Particularly useful for higher-order FEM |
symmetric_square | A tag for the square with vertices at (-1,-1), (1, -1), (-1, 1), (1, 1) |
symmetric_tetrahedron | A tag for the tetrahedron with vertices at (-1,-1,-1), (1,-1,-1), (-1,1,-1), (-1,-1,1) |
symmetric_triangle | A tag for the triangle with vertices at (-1,-1), (1,-1), (-1,1) |
unit_cube | A tag for the cube with vertices at (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1) |
unit_interval | A tag for the unit interval [0,1] |
unit_square | A tag for the square with vertices at (0,0), (1,0), (0,1), (1,1) |
unit_tetrahedron | A tag for the tetrahedron with vertices at (0,0,0), (1,0,0), (0,1,0), (0,0,1) |
unit_triangle | A tag for the triangle with vertices (0,0), (1,0), (0,1) |
unknown_config< MatrixType, VectorType, BoundaryKeyType, MappingKeyType > | A configuration class for a particular PDE. [SUBJECT TO CHANGE!] |
weak_form_checker< InterfaceType > | A helper class which scans whether a ViennaMath equation is in a weak form already |
weak_form_creator< InterfaceType > | Transforms a strong formulation of an equation to a weak form, assuming homogeneous Neumann boundary conditions |